满秩矩阵,证明三角矩阵是满秩矩阵?

不为零,它就一定是满秩的,通过反证法证明,若矩阵是不满秩的,那它的n个行向量线性相关,由行列式的计算方法,此行列式的秩必为0。n阶方阵A满秩,就是A的秩为n,则A有一个n阶子式不0,因为A只有一个n阶子式,即其本身,所以|A|≠0。设A是n阶矩阵, 若r(A) = n,则称A为满秩矩阵,但满秩不局限于n阶矩阵。扩展资料:在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。行秩是A的线性无关的横行的极大数目。如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。m×n矩阵的秩最大为m和n中的较小者,表示为min(m,n)。有尽可能大的秩的矩阵被称为有满秩,类似的,否则矩阵是秩不足。

满秩矩阵,证明三角矩阵是满秩矩阵?

应该说不满秩的方阵,对应的行列式必然为0 因为不满秩,说明方阵的各行向量(或列向量)线性相关(如果线性无关,就满秩了) 而行向量线性相关,就说明至少有一行可以由其他行乘系数相加得到,这根据行列式的性质可知,这样的行列式为0。例子,现在我们假设第一个矢量是(1.0),第二个矢量是(0,1),也就是说两个矢量分别是X轴和Y轴上的单位为正的单位向量,那么由这两个矢量构成的四边形,这个四边形其实就是一个正方形,根据面积的定义,其实就是*宽=1*1=1。扩展资料如果A的行列式不为零,那么A可以把一组线性无关的矢量,映射成一组新的,线性无关的矢量;A是可逆的(一对一的映射,保真映射,KERNEL是{0})。如果A的行列式为零,那么A就会把一组线性无关的矢量,映射成一组线性相关的矢量;A就不是可逆的(非保真映射,KERNEL不是{0}。我们可以研究他的陪集)。

版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。
(0)
上一篇 2022年5月29日 下午4:27
下一篇 2022年5月29日 下午4:28

相关推荐