价键理论,化学键的极性由强到弱怎么判断?

根据元素的氧化或还原性判断价键理论。

价键理论,化学键的极性由强到弱怎么判断?

化学键( chemical bond)是纯净物分子内或晶体内相邻两个或多个 (或离子)间强烈的 相互作用力的统称。使离子相结合或原子相结合的 作用力通称为化学键。离子键 、 共价键 、 金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论, 价层电子互斥理论,分子轨道理论和 杂化轨道理论等。金属键是一种 改性的共价键,它是由多个原子共用一些自由流动的电子形成的。

价键理论,化学键的极性由强到弱怎么判断?

原子间键结的类型包括离子键、共价键、金属键,这三种化学键各自有不同的成因;离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的[1] 。

原子间键结简介

离子键

带相反电荷离子的互相作用叫做离子键(Ionic Bond),成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。

离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。

定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。

离子键概念:带相反电荷离子之间的相互作用称为离子键。

成键微粒:阴离子、阳离子。

成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)

成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。

存在范围:离子键存在于大多数强碱、盐及金属氧化物中。

一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。

共价键

1、共价键(Covalent Bond)是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。

2、原子通过共用电子对形成共价键后,体系总能量降低。

共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。

共价键有不同的分类方法。

(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。

(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。

(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。

如铵根离子中的N—H键中有一个属于配位键)。

(4) 按电子云重叠方式分,有σ键和π键。

3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。

4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。

金属键

1、概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。

2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨(Lorentz,1904)和佐默费尔德(Sommerfeld,1928)等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论[2] 。

版权声明:本站部分文章来源互联网,主要目的在于分享信息,版权归原作者所有,本站不拥有所有权,不承担相关法律责任,如有侵权请联系我们,本站将立刻删除。
(0)
上一篇 2022年5月28日 上午1:24
下一篇 2022年5月28日 上午1:25

相关推荐